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Automating Interpretable  
Machine Learning Scorecards
INTRODUCTION

Scorecard quality depends on not only model performance but also its interpretability. In this 
paper, we use our toolbox to build and compare the performance of four scorecard models. 
The benchmark model leverages a modified logistic regression with constraints imposed via 
supervised binning and variable selection. Three challenger models are built using decision 
tree, random forest and gradient boosting methods. We demonstrate that the interpretable 
benchmark model sacrifices little predictive power compared to the unconstrained challenger 
models. Meanwhile, the constraints are frequently violated by the challenger models, causing 
counterintuitive results for scorecards where the interpretation is critical. 
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Automating Interpretable  
Machine Learning Scorecards
BY OLGA LOISEAU-ASLANIDI, NATCHIE SUBRAMANIAM THIAGARAJAH, AND VERA TOLSTOVA

Scorecard quality depends on not only model performance but also its interpretability. In this paper, we 
use our toolbox to build and compare the performance of four scorecard models. The benchmark model 
leverages a modified logistic regression with constraints imposed via supervised binning and variable 

selection. Three challenger models are built using decision tree, random forest and gradient boosting methods. 
We demonstrate that the interpretable benchmark model sacrifices little predictive power compared to the 
unconstrained challenger models. Meanwhile, the constraints are frequently violated by the challenger models, 
causing counterintuitive results for scorecards where the interpretation is critical. 

Introduction 
Interpretation is a key requirement for 

robust and tractable scorecard models for risk 
management, regulatory compliance, strat-
egy-setting, and product-marketing. Each 
characteristic included in the model must not 
only be a strong predictor that makes oper-
ational sense but also comply with a priori 
expectations or constraints.

Such constraints represent desirable 
patterns and relationships between the 
predictors and the score, based on business 
experience, industry trends and regulatory 
requirements. For instance, everything else 
being equal, higher-income customers are 
expected to have lower default probability; 
the default probability is typically higher 
amongst unemployed individuals; and low-
er credit quality is associated with higher 
frequency of late payment. Characteristics 
such as age, gender and country origin need 
to comply with the fair treatment principle, 
and monotonicity constraints can be used to 
achieve the desired pattern. 

Nevertheless, the inclusion of various 
types of constraints is not a readily available 
option in rapidly evolving scorecard-building 
setups leveraging various machine learning 

models. Without flexible and customizable 
constraints, counterintuitive or unexplainable 
results may appear, and some groups of cus-
tomers may be disadvantaged when deter-
mining their credit risk. 

In this paper, we use our toolbox that 
features an ML algorithm leveraging modi-
fied logistic regression with predefined con-
straints imposed via automated supervised 
binning and variable selection. We use this 
algorithm to build a benchmark scorecard 
model that is interpretable by design. We 
then compare this model with three chal-
lenger models built using other classifiers, 
decision tree, random forest and gradient 
boosting methods, in terms of model per-
formance and interpretability. To assess the 
challenger models’ interpretability, we use 
the toolbox to identify customer character-
istics that do not yield desired patterns and 
hence violate constraints. 

Our results demonstrate that there is no 
significant difference in performance between 
interpretable benchmark model and chal-
lenger classifiers models. Using different size 
datasets for personal loans and credit cards, 
we find that the benchmark model perfor-
mance is overall slightly inferior to challenger 

models in model fit and discriminatory pow-
er. We show that while the gradient boosting 
and random forest models can provide supe-
rior fit to the benchmark model, they do it at 
the cost of violating many constraints. 

The remainder of this paper is organized 
as follows. In section two, we survey the main 
applications of machine learning methods 
in scorecard-building. We then describe the 
methodology behind our algorithmic toolbox, 
which includes binning and variable selection 
for the benchmark model, and constraint vio-
lation assessment for the challenger models. 
In section three, we assess the performance 
of benchmark and challenger models using 
our toolbox in terms of their performance 
and interpretability.

Challenges of scorecard-building
The scorecard models are designed to 

rank-order customers by condensing the 
variety of variables into a single score. Score-
card types differ by the target variable, such 
as application, behavioural and collection 
scorecard. The models typically use the data 
for customer and product characteristics, 
while alternative information such as trans-
actional data, telecommunication, rental and 
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utilities variables can add more insight and 
predictive value. Such datasets vary by size 
and structure. 

Industry embraces ever-expanding and 
improving ML techniques at various stages of 
scorecard development, from data prepara-
tion and variable selection to model building, 
optimization and monitoring. Since compu-
tation power has increased dramatically over 
the last decade, advanced machine learning 
methods such as gradient boosting, neural 
networks and random forests have made 
their way into credit-scoring models. These 
methods have demonstrated their superiority 
in the speed of the scorecard-building process 
and often predictive power compared to the 
traditional logistic regression approach, see 
Efron & Hastie (2016) and Alpaydin (2020), 
among others. More complex classifier meth-
ods have proven to be especially superior in 
large unstructured datasets with many pre-
dictors. Chart 1 summarises applications of 
machine learning in scorecard-building. 

However, many advanced machine learn-
ing methods suffer from a lack of tractability 
and interpretability of model structure and 
predictions. The “interpretable” trend in 
ML model development has been gaining 
more attention, see, for example, Gilpin et al 
(2018) and Rudin (2019). Although there are 
some methods that enable us to peek into 
the black box, there is still no consensus on 
how to assess the interpretation quality. 1 As 
the interpretability translates into a set of 
constraints, algorithmic solutions for more 
complex ML methodologies are challenging. 
These issues have been recognized by indus-
try and regulators worldwide, who called 
for the responsible use of ML to ensure the 
principles of fairness, ethics, accountability 
and transparency when assessing customers’ 
credit risk. 

Recognizing the need for a scorecard to 
be interpretable, transparent, and able to 
withstand regulatory scrutiny, we have de-
signed an automated algorithmic toolbox. 
The scorecard toolbox includes tools for data 
analysis, model development and assess-
ment, model validation, model refinement, 
scoring, model-monitoring, and strategy-set-
ting. At the core of this toolbox are the bin-

1 	 For example, Lundberg and Lee (2017) developed Shapley 
Additive Explanations to interpret the output of machine 
learning models, while Carvalho et al (2019) provide a re-
view of machine learning models’ interpretability.

ning and the variable 
selection algorithms 
that solve optimiza-
tion problems subject 
to user-specified con-
straints required in 
credit applications. 

The scorecard 
toolbox allows us to 
use traditional and 
enhanced regression 
methodologies as 
well as alternative 
ML methods. Such 
an approach allows 
us to focus on key 
decisions, while relegating the tedious, com-
plex tasks of binning, variable selection, and 
the constraints violations assessment to 
automated algorithms. 

Binning algorithm 
Binning is a first step in scorecard model 

development. It transforms the values of var-
ious types of potential predictors into several 
groups, known as bins, according to specified 
criteria. Binning is applied to numerical data 
such as customer age or income, categorical 
data such as loan purpose or property type, 
and ordinal data that has defined ordering, 
such as customer education or employ-
ment status. The result of binning is a set of 
“binned” variables for the next step in model 
development, the variable selection.

 The key advantages of binning include 
	» Simplicity and business tractability. 

Binning is used to simplify the model 
predictors by creating groups that have 
expected patterns and relationships 
with the target variable. For instance, 
low-income customers are expected 
to have higher default rates than high-
er-income customers. Hence, it makes 
sense to split the numerical income 
values into several bins. Including 
binned variables allows us to evaluate 
only a few logical conditions to calcu-
late the score, instead of calculating 
the score for each possible combina-
tion of predictor values.

	» Flexibility to incorporate con-
straints. Binning can be formulated 
with various types of constraints. 
These constraints include binning size 

constraints, logical patterns, business 
expectations, and compliance with 
equal credit opportunity legal acts for 
customer age or gender. For example, 
a monotone or quadratic relationship 
between binned predictors and default 
rate can be incorporated as a con-
straint when splitting variable values 
into bins.

	» Capture non-linear relationships. 
Binning allows us to capture non-lin-
earities in a data-driven way, without 
making restrictive parametric assump-
tions. For example, account age may 
have a non-linear relationship with the 
default rate. 

	» Model accuracy by handling outliers 
and missing values. Binning mitigates 
the impact of outliers and missing 
values by grouping observations. 
Grouping of similar attributes with 
similar predictive strengths increases 
the model’s accuracy. For example, 
the procedure extracts information 
from such observations into a sep-
arate bin and uses it to predict the 
target variable. 

In practice, binning procedures vary de-
pending on data and model characteristics. 
Binning can be based on expert opinion, uti-
lize unsupervised or supervised algorithms 
with quantitative optimization techniques, 
or use a combination of these. Typically, 
many manual interventions and visual as-
sessments of the binning solution’s quality 
are required. 
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Chart 1: ML in Scorecard-Building
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The main idea of supervised binning is 
to find optimal cut-off points to define bins 
subject to various types of constraints. Some 
constraints are required to ensure each 
bin strikes a balance between being “wide 
enough” and “narrow enough” by having 
distinctly different risk characteristics with 
minimum information loss. Examples include 
controlling the number of bins, the number 
of observations in each bin, and non-over-
lapping confidence intervals for default rates 
of each bin. In addition, a critical aspect of 
binning is the enforcement of various types 
of constraints representing requirements that 
certain patterns must emerge when calculat-
ing the scores. 

Our toolbox automates the tedious as-
pects of supervised binning, allowing the 
analyst to specify options and preferences. 
The supervised binning algorithm solves an 
optimization problem with user-defined con-
straints, while controlling the number and 
discriminatory power of resulting bins. The 
procedure significantly reduces the time costs 
of generating predictive characteristics.

The key ingredients of our supervised bin-
ning algorithm include

	» Maximize binned variable’s predic-
tive power. User-defined performance 
metrics such as information value, Gini 
and chi-square statistics to assess vari-
able’s predictive power. 

	» Comply with constraints. User-de-
fined constraints and label-ordering 
for ordinal variables are incorporated 
into the optimization algorithm. These 
constraints represent expected trends 
in the default rates across bins. The 

toolbox implements both monotone 
(such as decreasing, increasing) and 
non-monotone (such as u-shaped, 
hump-shaped) types of relationship 
between the binned variable and target 
variable. Moreover, the toolbox allows 
for the incorporation of the constraints 
for ordinal variables based on the us-
er-provided order of labels.

Charts 2 and 3 illustrate an example 
of implementing constraints for ordi-
nal data for available savings. Chart 2 
shows the preferred order of the cate-
gories specified by the user: The default 
rates follow a non-increasing trend 
across categories as lower savings are 
associated with worse credit quality. 
Chart 3 demonstrates the solution 
by the supervised binning algorithm 
obtained in line with this imposed 
assumption. The categories “100 ≤ 
to < 500”, “500 ≤ to < 1,000” and “≥ 
1,000” are merged, but the desired 
ordering is pre-
served as the 
trend in default 
rates is indeed 
non-increasing.

	» Control num-
ber, size and 
discriminatory 
power for 
selected bins. 
Users can con-
trol the number 
and size of 
bins as well 
as specify the 
threshold level 

of confidence interval to assess the 
discriminatory power of the selected 
bins. To improve the quality of binning, 
the algorithm considers not only the 
point estimate but also a confidence 
interval for the default rate of each bin. 
For example, when confidence inter-
vals for each bin overlap, the chosen 
bins may not have enough power to 
discriminate between defaulted and 
non-defaulted observations. 

As illustrated in Charts 4 and 5, 
the algorithm combines such bins to 
achieve an optimal solution. Chart 4 
shows an example binning solution 
with overlapping confidence inter-
vals for the 3rd and 4th bins. Chart 5 
demonstrates the toolbox solution that 
satisfies the constraint on non-over-
lapping intervals. In this example, 
this is achieved by merging intervals 
“10,847 to 14,803” and “>14,803” into 
“>10,847”. 
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Chart 4: Confidence Intervals Merging

Source: Moody’s Analytics
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Chart 2: Constraints for Ordinal Data
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Source: Moody’s Analytics

Chart 3: Constraints for Ordinal Data
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Chart 6: A Simple Decision Tree Example

Source: Moody’s Analytics
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Chart 5: Confidence Intervals Merging

Source: Moody’s Analytics
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Variable selection algorithm  
As a next step of the model-building 

process, the variable selection algorithm is 
used to identify the characteristics to in-
clude into the regression model. The binned 
candidate variables obtained at the previous 
binning stage can be used as inputs into the 
variable selection procedure to define the 
model specification. 

In practice, various methodologies are 
used for the variable selection in various 
types of risk models. Brute-force algorithms 
exhaustively evaluate all possible combi-
nations of candidate predictors to find the 
best subset. These algorithms can be mod-
ified to incorporate constraints. Dynamic 
credit risk models with linkages to macro-
economic as well as portfolio characteristics 
are good examples when such procedures 
work well, see Licari, Loiseau-Aslanidi and 
Vikhrov (2017).

Alternative variable selection procedures 
are preferred when the number of candidate 
characteristics and number of observations 
is so large that it makes the exhaustive 
search’s computational cost prohibitively 
high. Stepwise algorithms such as forward 
stepwise have the advantage of relatively 
high execution speed, as they rely on a se-
quence of nested models as opposed to the 
brute-force exhaustive search. Not surpris-
ingly, forward stepwise regression is a work-
horse variable selection procedure in credit 
risk scoring.

Nevertheless, classical stepwise meth-
ods require enhancements to improve their 
efficiency and applicability for scorecards. 
First, the stepwise algorithm is not robust 
to variable ordering. The order in which 

variables enter the model has a significant 
impact on the final model that may result in 
overfitting, dependence on training sample 
selection, or that may eliminate variables 
that would provide additional informa-
tion and improve model performance, see 
Altman & Anderson (1989) and Audrino 
& Kanus (2016) among others. Second, 
stepwise regression does not consider the 
possible correlations between the variables. 
Nor does this algorithm consider constraints 
such as logical patterns based on business 
experience, industry trends, or legally 
required relationships. 

In our toolbox, we enhance the stepwise 
algorithm by offering capabilities to speci-
fy user preferences on dependencies. Such 
constraints may include the expected rela-
tionships between characteristics and the 
target variable, statistical significance of the 
variables, and maximum allowed value of 
pairwise correlation. These constraints may 
be imposed either on coefficients’ estimates 
signs or their order. After the model is built, 
the validation is performed, and an iterative 
model refinement algorithm sequential-
ly excludes variables that do not comply 
with the constraints from a list of initial 
potential drivers. 

Assessing constraints violation for 
challenger models

The scorecard model designed using 
the steps outlined above is designed to 
satisfy user-defined constraints imposed 
at the supervised binning and the variable 
selection stages. In contrast, decision tree, 
random forest and gradient boosting chal-
lenger models need an additional analysis 

to assess models’ tractability. Our toolbox 
provides several options to identify the 
constraints violations for these machine 
learning models. 

In the case of decision tree, it is feasible 
to extract all tree nodes. We calculate the 
average probability of default for each vari-
able interval determined by tree cut points. 
If the variable appears at different tree 
branches several times, the average default 
probability is calculated based on all internal 
and leaf nodes, taking into consideration in-
teraction terms. This procedure is analogous 
to evaluating the type of the relationship 
in the case of binning and is, therefore, 
straightforward to use for evaluation of the 
constraint’s violation. A simple tree exam-
ple illustrating the procedure is shown in 
Chart 6.

In the case of random forest and gradient 
boosting, the extraction of all tree nodes and 
splits is not the best solution because of their 
complicated model structure. We rely on 
the Shapley values approach used to assess 
the marginal contributions of various drivers 
into predicted probability of default values. 
Because of the potentially very large number 
of cut points for continuous variables, the 
evaluation of trend monotonicity based on 
the average default rates for each bin may 
not be applicable. 

To facilitate comparability of the results 
with a logistic regression model, we focus on 
evaluation of the constraints only for ordi-
nal variables and calculate average Shapley 
values for each category. Additionally, the 
toolbox provides a standard heat map of 
Shapley values for various realizations of 
each driver. 
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Models Assessment

Data and methodology
To assess and compare the performance 

of several ML models, we conduct an em-
pirical study using two datasets that differ 
by product type, geography and size. Both 
datasets cover consumer credit portfolios 
from the UCI Machine Learning Repository2, 
which is frequently used in studies on per-
formance evaluation of machine learning 
and data mining algorithms. The first data-
set covers a German fixed-term portfolio 
for personal loans, while the second dataset 
covers a credit cards portfolio in Taiwan (see 
Table 1).

We begin by splitting each dataset into 
development (train) and holdout (test) in 
a standard proportion 70:30. To mitigate a 
sample-dependency bias for model perfor-
mance measures, especially for the German 
dataset consisting of only 1,000 observations, 
we generate 100 train and test subsets reali-
zations without replacement. 

2 	 This is a real-life credit scoring dataset publicly available at 
the UCI repository at http://kdd.ics.uci.edu/. 

For each realization of the 
train dataset, we build four alter-
native models. The first model 
is a benchmark built using the 
algorithmic supervised binning 
and modified weight-of-evidence 
logistic regression with example 
constraints presented in Table 2. 
Next, we use decision tree, ran-
dom forest and gradient boosting 
of decision trees with least-squares loss func-
tion as three challenger models.

For the latter models, it is crucial to 
properly tune hyper-parameters to prevent 
overfitting. We tune hyper-parameters 
through stratified k-fold cross validation with 
application of exhaustive grid search over 
various parameter combinations to maximize 
the average accuracy ratio on validation 
subsamples. For the RF model, the procedure 
optimizes the maximum depth of trees and 
number of estimators. For the GB model, the 
set of optimized parameters is broader, and 
along with maximum depth and number of 
trees it includes the learning rate and subsa-
mple size to be selected for the estimation of 
each tree. 

Model performance and interpretability 
assessment

We use standard measures to evaluate 
the models’ performance, and we assess 
models’ interpretability by looking into 
constraints violations. The accuracy of the 
model fit is measured by the Brier score, 
while the discriminatory power is assessed 
through Gini or the area under the curve 
(see Table 3).

We observe that enforcing constraints 
on the benchmark model has little impact 
on the performance, and for brevity we do 
not report the results of the benchmark 
model without constraints. Moreover, the 
benchmark regression model with supervised 
binning and constraints demonstrates similar 

Table 1: Summary of Dataset

Country Germany Taiwan
Product type Personal loans Credit cards
Number of observations 1,000 30,000
Number of characteristics 24 23
Number of defaults 300 6,636

Sources: UCI Machine Learning Repository, Moody’s Analytics

Table 2: Selected Example Constraints for Model Interpretation Evaluation

Variable Product type Variable type Trend Order of labels for ordinal variables
Duration in mo Personal loans Numerical Monotonic

Savings account amount Personal loans Ordinal Negative
< 100, 100 <= ... < 500, 500 <= ... < 1000, >= 
1000

Credit amount Personal loans Numerical Positive

Present employment since (employment longevity) Personal loans Ordinal Negative
Unemployed, ... < 1 yr, 1 <= ... < 4, 4 <= ... < 
7, >= 7 yrs

Installment rate Personal loans Numerical Monotonic
Other debtors Personal loans Ordinal Negative None, co-applicant, guarantor
Present residence since Personal loans Numerical Negative
Housing type Personal loans Ordinal Negative For free, rent, own
Number of existing credits Personal loans Numerical Positive

Job Personal loans Ordinal Negative

Unemployed, unskilled, unskilled resident, 
skilled employee, official, management, 
self-employed, highly qualified employee, 
officer

Number of people being liable Personal loans Numerical Negative

Telephone Personal loans Ordinal Positive
Yes, registered under the customer’s name, 
none

Amount of given credit Credit cards Numerical Positive

Education Credit cards Ordinal Negative
NA, high school, others, university, graduate 
school

Past payment status in Apr-Sep 2005 Credit cards Ordinal Positive
Amount of bill statement (balance) in Apr-Sep 2005 Credit cards Numerical Monotonic
Amount of previous payment in Apr-Sep 2005 Credit cards Numerical Monotonic

Source: Moody’s Analytics

http://kdd.ics.uci.edu/
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performance to the challenger ML models.3 
The GB model performs slightly better for 
personal loans, while for credit cards the 
RF model outperforms the others. The DT 
model’s performance is inferior for both 
product types. 

To evaluate the models’ interpretability, 
the violation of constraints is evaluated for 
the challenger DT, RF and GB models (see Ta-
ble 4). The benchmark model satisfies all the 
constraints by design. In the case of personal 

3 	 We compare performance based on the accuracy of their 
predictions on the test dataset. Model performance on train 
datasets cannot be used for an objective model evaluation 
since that dataset was used for model development.

loans, the constraints are violated for six out 
of 10 variables that appear in the DT model. 
For example, the credit amount and the num-
ber of existing credits do not have the expect-
ed positive relationship with the default rate. 
Similarly, the employment longevity and job 
description ordering are counterintuitive, re-
sulting in the unemployed customers having 
lower default rates than those with years of 
employment. For the RF and GB models, all 
the constraints are violated, with the employ-
ment-related variables having the highest 
percentage of violation cases. 

In the case of credit cards, the selected 
variables represent the most recent (Sep-

tember and August) past payment status 
and previous payments. The rest of the lags 
are not selected by the models because of 
the absorbing properties of the most recent 
observations. As expected, the constraints 
are not violated in the DT model because of 
the relatively shallow trees produced by the 
algorithm, while the constraints are violated 
for the RF and GB models. 

The illustration of constraints violations 
for employment status is depicted in Charts 
7-10. In contrast to the benchmark model 
with supervised binning, where lower default 
rates are associated with longer duration of 
employment, the models using the DT, RF 
and GB methods show counterintuitive rela-
tionships. The DT model predicts a lower de-
fault rate for the categories with unemployed 
and shorter employment duration than for 
categories with longer employment duration. 
Both the RF and GB models predict lower 
default rate for the “Unemployed” versus the 
1-year employment duration categories. Ad-
ditionally, the RF model predicts a somewhat 
lower default rate for four to seven years than 
for seven years or more. 

Table 3: Summary of Model Performance

Personal loans Credit cards
Gini Brier score Gini Brier score

WOE logistic with supervised binning with constraints 0.519 0.175 0.525 0.139
Decision tree 0.417 0.198 0.41 0.14
Random forest 0.513 0.177 0.567 0.132
Gradient boosting 0.544 0.173 0.562 0.133

Source: Moody’s Analytics

Table 4: Frequency of the Example Constraints Violation 

Constraint variables Data Variable type % of appearance, DT
% of violated  

cases, DT
% of violated  

cases, RF
% of violated  

cases, GB
Duration in mo Personal loans Numerical 100 0
Credit amount Personal loans Numerical 95 26.32 - -
Present employment since Personal loans Ordinal 50 16 92 93
Other debtors Personal loans Ordinal 32 0 62 52
Savings account amount Personal loans Ordinal 26 0 66 39
Installment rate Personal loans Numerical 22 0 - -
Present residence since Personal loans Numerical 25 92 86 97
Housing type Personal loans Ordinal 0 - 33 52
Job Personal loans Ordinal 5 60 91 91
Telephone Personal loans Ordinal 7 42.86 64 31
Number of existing credit Personal loans Numerical 3 100 - -
Number of people being liable Personal loans Numerical 0 - - -
Education Credit cards Ordinal 0 - 0 100
Past payment status in Sep 2005 Credit cards Ordinal 100 0 100 100
Past payment status in Aug 2005 Credit cards Ordinal 100 0 100 100
Past payment status in Jul 2005 Credit cards Ordinal 0 - 100 100
Past payment status in Jun 2005 Credit cards Ordinal 0 - 100 100
Past payment status in May 2005 Credit cards Ordinal 0 - 100 100
Past payment status in Apr 2005 Credit cards Ordinal 0 - 100 100
Amount of previous payment in Sep 2005 Credit cards Numerical 6 0 - -
Amount of previous payment in Aug 2005 Credit cards Numerical 28 0 - -
Amount of previous payment in Jul 2005 Credit cards Numerical 1 0 - -
Amount of previous payment in Apr-Jun 2005 Credit cards Numerical 0 0 - -
Amount of bill statement (balance) in Apr-Sep 2005 Credit cards Numerical 0 0 - -

Source: Moody’s Analytics
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Conclusion
Using our automated toolbox, we de-

signed and compared several models in terms 
of their performance and interpretability. The 
considered models include the benchmark 
model leveraging modified logistic regression 
with supervised binning, and three challenger 
models using the decision tree, random forest 
and gradient boosting methods. 

Models’ interpretability is represented 
by a set of constraints. The key feature of 
the used toolbox is the broad type of us-
er-defined customizable constraints used 

in supervised binning and variable selection 
algorithms for the benchmark model. The 
toolbox is also used to assess the chal-
lenger ML models’ results by looking into 
constraints violations.

We demonstrated that our benchmark 
model achieves somewhat similar perfor-
mance to the challenger ML models, while 
being easily interpretable and satisfying 
imposed constraints by default. Although 
the gradient boosting and random forest 
models slightly outperform the benchmark 
model, this is achieved at the expense of 

the high risk of constraints violation. The 
challenger models produce counterintui-
tive results for some model characteristics, 
making further model refinements neces-
sary before the model is implemented for 
decision-making. 

Our algorithmic tools to build the bench-
mark model allow for a reasonable com-
promise between the automation to reduce 
manual intervention and minimize the time 
and costs of model development, and the 
model interpretation that is critical in credit 
scoring applications.
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Chart 10: Shapley Values vs. Employment

Source: Moody’s Analytics
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Chart 9: Shapley Values vs. Employment

Source: Moody’s Analytics
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Chart 7: Default Rates vs. Employment

Source: Moody’s Analytics
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Chart 8: Default Rates vs. Employment

Source: Moody’s Analytics
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